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Abstract —  The notion of worm-killing worm has been in the folklore for some time . However the 

obvious fear of the killer worm itself being compromised, or of any self-propagating code set loose 

(possibly over administrative boundaries), has barred serious exploration on the  practical aspects of 

the idea. In this paper, we  suspend such concerns momentarily, and investigate its functional validity. 

This effort is motivated by recent fast worm epidemics exemplified by that of SQL Slammer, which 

was overwhelmingly faster than traditional human-intervened response. Specifically, this paper 

evaluates the killer worm in terms of the prevention effect and the incurred traffic cost. Above and 

beyond, we consider supplementary techniques that could boost the performance and mitigate the 

harmful side-effects of the worm-killing worm. 
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I. INTRODUCTION 

The outbreak in Jan. 2003 of the SQL Slammer (a.k.a. Sapphire) worm grew into its full- fledged state in 

just 10 minutes [1]. In contrast, substantial response to the epidemic came in 2 to 3 hours worldwide [2]. 

Not only this incident serves as an existence proof to the reality of fast worms predicted a year earlier [3], 

but more importantly it heralds the beginning of a new era – where traditional human-intervened response is 

no longer adequate to preempt the epidemic. In other words, we entered a realm where not only the attack is 

automated (as it has been) but also the defense mechanism should be spontaneously triggered in order to 

counter the attack in time. 

At the extreme of the spectrum of automatic responses is the elusive killer-worm. The notion of worm-

killing worm has been in the folklore for some time [4,5,6]. Although there is no formal definition of killer 

worm, its most characteristic (and controversial) aspect is that it spawns exactly as worms do. In fact, it is a 

worm, except that it cures the infected and preventively patches vulnerable nodes. The gist of the idea is that 



   

 

through and only through worm-like spawning, it can par with fast worms1 in speed. However, the very 

idea of unleashing a self-propagating code possibly over administrative boundaries, however “good-willed” 

[4] it might be, can be threatening. What if the killer worm itself is compromised? How complicated is it to 

set up the trust association among normally mutually distrustful administrative domains?  

Despite these concerns, there was a report [5] that two separate killer-worm mobile codes, dubbed Code 

Green [6] and CRclean, were actually released to the Internet to fight the Code Red (obviously without 

consent from the “victims”) . And recently, Toyoizumi and Kara [4] attempted a theoretical modeling of the 

killer worm based on the Lotka-Volterra equations in order to optimize its behavior. In this paper, too, the 

ethics and other non-technical ramifications are put aside. This is because we believe that judging its 

functional validity should come first before starting any such discussions, especially in the light of recent 

fast worm epidemics such as that of SQL Slammer. So in this paper we attempt to quantify the following 

aspects of the killer worm: 

l effectiveness (i.e., if a killer worm can indeed preempt a worm epidemic, and if so, how fast)  

l efficiency (i.e., at what costs) 

This paper is organized as follows. Section II discusses our model of the killer worm, and the worm 

epidemic. In Section III, we attempt to shed light on various performance aspects of the killer worm through 

simulation experiments based on the model established in Section II. Section IV concludes the paper. 

II. KILLER WORM AND EPIDEMIC MODEL 

In our system model, there are a finite number of susceptible nodes. In reality, these are computers with an 

exploitable vulnerability. For instance, they could be Web servers running Microsoft IIS software (as in 

Code Red II) or SQL server software (as in SQL Slammer). Usually, the number of susceptible nodes is 

much smaller than the size of the entire population, which is the number of hosts attached to the Internet in 

reality. When a susceptible node is compromised by the worm released by the attacker, it becomes infected. 

On the other hand, when a previously infected node is cured, we say it is removed – of the worm. This 

model closely resembles that used in epidemiology, and we can use a differential equation to mathematically 

describe the dynamics. In Staniford et al. [3], a logistic equation is used to model the number of infected 

nodes after a given time since the outbreak began. Namely,  

                                                                 
1 Henceforth we will refer to the worm-killing worm as “the killer worm” or “the killer,” as opposed to 

its malicious counterpart, which we refer to as simply “the worm.”  



   

 

 

(Eq. 1) 

 

 

When the killer worm is injected into the system, the dynamics becomes more complex. In [4], the Lotka-

Volterra equations are employed to model the prey-predator dynamics between the worm and the killer 

worm. Unlike in [3], however, the environmental capacity K, i.e., the number of susceptible population that 

the worm can prey upon, is not included in the model.  

When the system starts, a single worm begins to spawn. It scans the entire population (since it does not 

know a priori which node is vulnerable) to find a susceptible node2. When the worm finds one, it infects it, 

which involves self- replicating and planting a replica there. The replica at the infected node also starts 

spreading. The dynamics of the epidemic is affected by many parameters: the total population (T), the 

number of initial susceptible population (S), the scanning rate (v), and the time for the infected node to 

become active (d). In particular, if d=0, the infection rate of a worm under random scanning is 

T
S

vr ⋅=      (Eq. 2) 

When the killer worm is used, we must also consider the reaction time (a) and the killer’s scanning rate (k). 

The reaction time is what takes to detect the onset of the epidemic and take a counter-action (e.g., 

unleashing the killer worm). It is well known that reducing the reaction time is critical [10] to contain the 

epidemic to the minimum. In this paper, we assume that once the killer is unleashed, it replicates itself on 

both susceptible and infected nodes. Other mode of operation may be replicating only on the previously 

infected nodes. We will revisit this issue in Section III. 

The shortcoming of the prey-predator model of [4] is that it does not explicitly take account of these 

parameters, above and beyond the environmental capacity. Therefore, in this paper we mostly resort to the 

simulation experiments to investigate their affects. 

III. SIMULATION EXPERIMENTS 

In this section, we will quantify the dynamics of the killer worm based on the model set forth in Section II. 

                                                                 
2 An exception is the “hit-list” worm, which accumulates the list of susceptibles through scanning before 

it starts spreading [3]. So far, in no major worm epidemic the worm body contained a hit list (For instance, 

see [2]).  
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We will use the following values for the system parameters: 

TABLE I. DEFAULT PARAMETER VALUES 

Parameter Meaning Default value  
T Total population 232 
S Susceptible population 100,000 

v, k  Scanning rate 10,000/s 
d Worm activation delay 0s 
a Reaction time 10s 
W Number of starters 1 

  As for T, note that it does not have to represent the real population in the system. Real- life worms usually 

probe the entire IP address space in a blind manner [1,7], not knowing which address is in real use and 

vulnerable. Therefore, it is natural to model the worm as well as the killer worm to “think” that total 

population is 232 (entire IP space size). The number of susceptible nodes S is set roughly to the order of SQL 

Slammer infection – which was at least 75,000 [1]. Also for v and k, the SQL Slammer epidemic is used as a 

reference. In SQL Slammer, the average scanning rate from the infected node was 4,000/s where the 

observed maximum was 26,000/s [2]. Since our focus in this paper is on the effectiveness of the killer worm 

in fast epidemics, we set the average scanning rates higher. We do not set k > v since in a fast epidemic, the 

worm scanning rate is likely to be at the maximum that the infected node’s processing and bandwidth 

capacity can offer [1]. So the killer worm can at best par with it, but not exceed. As for d and a, we set the 

default to 0 and 10 seconds, respectively. But we will see the impact of changing these values below. By 

default we assume that both the worm and the killer start from a single entity as mentioned in the previous 

section. So the number of progenitors W is 1 unless otherwise mentioned. In reality, however, this may not 

be true. Both the attacker and the killer worm defense system may each want to start from as many locations  

to boost the initial spawning speed. We will discuss this aspect later on. 

Figure 1 shows the typical dynamics of the infected population vs. treated population (i.e., removed + 

prevented) as a function of time, under the default parameter values listed in Table I. We notice that for a 

relatively long time in the beginning of the epidemic, the number of infected population remains small. This 

is exactly why hit- list scanning may be employed, to shorten this period as much as possible [3]. But at 

around 30 seconds into the epidemic it explodes, demonstrating its characteristic exponential take-off [3]. 

However, the killer worm encroaches upon the infected nodes base, forcing the epidemic to die out after 90 

seconds. Instead, the sum of the removed and the prevented should show the logistic curve, since the killer 

worm preys on both the susceptible and the infected, whose sum is fixed at S.  
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Figure 1. Typical epidemic in the presence of the killer. 

A. Parameter sensitivity 

In the first experiments, we investigate the impact of the parameters to the dynamics of the epidemic, 

starting from the reaction time, a. Just as in any infectious disease control, containing the outbreak in its 

early stage is considered crucial [10]. For instance, in retrospect, it is argued that we had 30- to 60-second 

window at the beginning of the SQL Slammer epidemic for effective containment [2]. In this paper we are 

looking at faster epidemics, so we vary a well within that range: from 5 to 30 seconds. Figure 2 shows the 

result. The x-axis represents a, while the y-axis is the number of infected nodes at the peak of the epidemic, 

Imax. For instance, the peak occurs at t=53 in Figure 1. We find that Imax is roughly a linear function of a. In 

terms of the prevention effect, the number of nodes patched by the killer before infection nearly disappears 

with a > 30. Namely, almost all vulnerable nodes in the system are infected before the killer visits in that 

time. It corroborates the analysis on the size of the time window for effective response in a fast epidemic [2]. 

This result has a grave implication – in future fast epidemics, detection must be done extremely fast, in 

much less than a minute. Otherwise, most vulnerable nodes will have already sustained a possibly damaging 

hit from the worm by the time a killer worm comes to the aid.  
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Figure 2. The impact of the reaction time. 

But how easy is it to detect the onset of the outbreak within, say 10 seconds, without too many false 

positives, considering there are only a small number of infected nodes in that time (e.g., it is 0.011% of the 

vulnerable population at t=10 in Figure 1)? Designing a detector with such precision and speed will be 

extremely difficult, if not impossible. Unless set loose within a few tens of seconds into the epidemic, even 

the powerful killer worm cannot prevent massive infection. Therefore, unleashing the killer worm after 

detecting the outbreak is likely to have limited utility against a fast worm. But we reserve the judgment on 

its effectiveness on slow epidemics.  

The impact of parameter S is also important. In essence, with a smaller vulnerable population base, it is 

more difficult to derive a fast epidemic. Assuming that the killer is unlikely to encounter an infected node at 

the early stage of the outbreak, we can approximate the number of infected nodes using the logistic equation 

given in [3]. Figure 3 shows the approximate time for the infection to reach 10% of S, as a function of S. 

With S=10,000 and all other parameters fixed at the default, the number of infected is predicted at 12, even 

at t=100. In contrast, if the susceptible population is 1,000,000, it takes less than 10 seconds to reach the 

10% infection. This tells us that we need to ensure first the integrity of more widely deployed softwares, in 

order to avoid fast and large worm epidemics. For larger values of the infection ratio, our assumption of 

limited interactivity between the worm and the killer will be probably broken, and the logistic equation will 

be rather misleading.       



   

 

The contribution of W in boosting the initial growth can be also predicted based on the same assumption 

of interactivity (or lack thereof) – the number of infected nodes is strictly proportional to W [4]. 
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Figure 3. Time to 10% infection as a function of s. 

  And we can see from (Eq. 1) that the infection rate is proportional to the scanning rate (v or k depending 

on the kind of worm in hand). So the number of infected nodes grows as an exponential function of the 

scanning rate [4]. In reality, however, the scanning rate is something that is hardly controlled, so we do not 

quantitatively analyze its performance impact. The larger the scanning rate, the faster the spread, so the 

attacker would want the scanning to be as fast as the bandwidth and processing allows [3]. For instance, in 

SQL Slammer, UDP packets with the worm payload were blasted out as fast as they can be, making the 

epidemic “bandwidth- limited” [1].  

B. Cease and desist 

In terms of the bandwidth usage, a killer worm that keeps trying to spawn even after the epidemic dies 

out will be no less problematic than the worm epidemic itself. Recollect that SQL Slammer worm could 

paralyze a substantial part of the Internet with just scanning traffic (it carried no other damaging payload). 

In [4], this very issue is addressed and a solution is proposed – controlling “predatory rate” and “predator 

multiplication rate”. The former is the rate at which a killer worm hunts (thus kills) a malicious worm, and 

the latter is the rate at which a killer replicates itself upon a kill. For instance, in our system the 



   

 

multiplication rate is 1, i.e., a killer worm that found an infected node gives birth to a single replica. 

Unfortunately, in reality we cannot determine the predatory rate a priori – it can only be obtained through a 

post mortem analysis, e.g., 8.5 per second in SQL Slammer [7]. This is because the predatory rate is a 

function of many system parameters we do not know before the outbreak. For one, we do not know S, 

namely how many have not patched for the particular vulnerability, before the epidemic actually occurs.  

Therefore, we need a more practical mechanism to optimize the traffic usage  of the killer worm. In this 

paper, we fuse the “rumor-mongering” model [11] into the construction of the killer worm: a rumor-monger 

loses incentive to spread the word when he finds that too many people already heard about it. This way, by 

the time most people have heard the rumor, the rumor naturally stops spreading. Likewise, if the modified 

killer finds that the visited node has been removed of the worm already, it considers the visit a failure. When 

the fraction of the failures increases beyond a threshold r, the killer (to be precise, an instance) self-destroys. 

Figure 4 shows the impact of this modification on the system behavior. The y-axis represents the number of 

killers’ scanning packets generated system-wide. We vary r from 0 to 0.9, and the impact is significant. 

Even at r = 0.1, the number of scanning packets decreases by half. However, higher thresholds cause less 

dramatic decrease. But it is one required self-control mechanism that a killer worm must be equipped with.  
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Figure 4. Volume of scanning traffic with different r. 

Would the infection be more virulent with more stringent killer control (i.e., larger r)? Surprisingly, the 

number of infected nodes for different values of r is almost identical in our current setting (Figure 5). Figure 

5 also shows that the time the curves in Figure 4 begin to diverge interestingly concurs with the time at the  



   

 

peak infection. Although Figure 4 seems to suggest that lowering r is only beneficial, the optimal value of r 

must be a function of many other system parameters. Again, we need a general analytical framework to 

dynamically determine the optimal value of r. It is a subject of our ongoing work.  
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Figure 5. Number of infected hosts under cease-and-desist. 

C. Address checking  

Above we argued that the killer worm is practically useless if started long into a fast outbreak, due to the 

severe requirement for early reaction. One way to slow down the epidemic to buy more time for the killer 

worm launch, is to let each host check if the outgoing packet is using legitimate IP addresses. If not, it is 

highly likely that the packet is part of an attack [8]. In particular, if the destination address is illegal (either 

“Martian” [12] or unallocated by IANA[13]), it is likely a scanning packet [8]. This is because worms 

randomly scan the IP address space: Code Red II generates an address within the same /8 prefix with 

probability of 1/2, /16 prefix with 3/8, others with 1/8 [7]. SQL Slammer does not have such preference, and 

it generates a random address with equal probability. Since the probability of illegal address generation is as 

large as 0.5 [8], the presence of an attack can be quickly identified at the traffic source. In this paper, we 

assume that the worm randomly scans the entire IP address a la SQL Slammer. If address violations occur 

more than a preset number of times θ, we assume here that the host begins self-audit, eventually killing the 

worm within. In [8], it is shown that the exact threshold value is not important because in reality, there are 



   

 

few innocent hosts that habitually transmit to illegal addresses. So, ordinary hosts are hardly punished even 

if θ is set relatively low. We let θ=5 in this paper. 

Obviously, it is unrealistic to assume that the address checking is deployed on all nodes. At best the 

deployment will be partial. We refer to the deployment ratio as δ, and we vary it from 0 to 0.99 to see the  

impact. It is intuitive that address checking has an effect of reducing the susceptible population that can be 

exploited as a worm spreader, by (1-δ). This is because although the infected nodes with the address 

checking can attempt maximum of θ times to infect other nodes, S/T is so small that the probability of 

finding a victim in so many attempts is low, and it has little affect on the result. Even if S is on the order of a 

million, S/T is much less than 0.001. With such small S/T, we can see that 

 

 

 

which makes the exponential term approach 1 in the logistic equation (Eq. 1). In particular, when rà0, 

x(t)àx0. In other words, the epidemic does not progress. 
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Figure 6. Impact of address checking. 

Figure 6 shows that the address checking indeed has a slowdown effect on the epidemic, but it is 

pronounced only at larger δ values. However, the address checking technique is simple to incorporate in 
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hosts [8], so it could be an effective deterrent to fast epidemics if adopted as a standard feature in Internet 

hosts, as it is in routers [12]. Finally, note that the address checking is impartial – it can also kill the killer 

worm if it were to blindly scan as most worms do. Therefore, the killer worm should filter illegal addresses 

in its scanning packets to avo id being shut down by the address checking hosts. 

D. Propagation path backtracking 

In order to minimize the epidemic, the killer worm must hit as many infected nodes as possible at the 

outset, when the number of the infected node is still small. One way to achieve this objective is to improve 

the accuracy of the “guesses” on the part of the killer. To assist the killer, we can let each host maintain a list 

of recent correspondents. For instance, a 30-second worth of IP addresses from which a host received 

packets (possibly containing worm payload) could be recorded. When the killer worm finds an infected 

node, it can start from the IP addresses in the node’s  list since the worm that planted a replica at the infected 

node could have come from one of those addresses. Figure 7 shows the result of this enhancement. We 

notice that the infection is indeed significantly reduced, while the reduction quickly becomes marginal with 

progressively large time window.  
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Figure 7. The impact of address recording for backtracking. 

One might think that the notion of “time bomb” is applicable on the attacker’s part – namely, if the 

attacker intentionally puts a delay until the activation of the worm, e.g., 60 seconds, then the worm would 



   

 

evade the backtracking. However, this delayed activation technique would only procrastinate the spread of 

the worm in its initial phase, as shown in Figure 8. In the figure, the delayed epidemic still shows the 

exponential behavior (the y-axis is in log scale), but it is too slow to cause a fast epidemic. This is because 

the attacker, by inserting the artificial delay, is widening the time gap between the “generations” [3] of 

infection. So we can argue that fast epidemics will shun such delay. If deployed widely, therefore, exploiting 

the history of communication in killer worm propagation will be a powerful technique to boost the killer’s 

performance. One last caveat is that this technique is effective against the worms that are carried over TCP, 

and those that use UDP but do not employ source address spoofing. This is because a bogus address in the 

list does not help in the backtracking. Note that the scanner normally cannot spoof when using TCP.  
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Figure 8. Pausing to avoid backtracking only backfires. 

 

Finally, one might argue that it is more natural for the killer to replicate only when it succeeds to neutralize 

a worm (but not upon patching the susceptible). However, then, the worm epidemic is expectedly more 

virulent as less nodes participate in exterminating the worms. Figure 9 compares the impact of limiting the 

spawning of the killer worm at the already infected nodes. With the default parameters, we can see that the 

killer worm spreads too slowly to preempt the worm. In the particular example, almost all nodes get infected 

before the epidemic starts to decrease. In contrast, the maximum infection tops out at 40,000 when the killer 

worm is not constrained. 
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Figure 9. Killer worm is slower if it spawns only at infected nodes. 

 

IV.  CONCLUSION 

 In this paper, we evaluate the mythical killer worm purely on its functional validity. Our investigation 

shows that it would be hard to contain today’s fast worm epidemics with the killer worm technique, mainly 

because of the difficulty to quickly detect the onset of the epidemic. Unless set loose within a few tens of 

seconds into the epidemic or the epidemic is significantly slowed down with other assistive measures, even 

the powerful killer worm would not prevent massive infection. But we reserve the judgment on its utility 

against slow epidemics. Also, we find that the bandwidth usage of the killer worm must be controlled, to 

prevent unintended DoS effect by excessive scan traffic generation. We propose a rumor-mongering model 

to regulate the total number of killer worms in the system. We also demonstrate that recording the identity 

of recent corresponding nodes helps to boost the performance of the killer unless address spoofing is 

employed in the malicious worm propagation. The effect of illegal address checking is also evaluated as an 

assistive technique, which turns out to slow down the epidemic if used widely.  
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